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Abstract—In this paper we explore the notion of a secure
kiosk, a trusted computing platform built using off-the-shelf
components. We demonstrate how Kiosks serve as convenient
primitives when designing secure computing protocols, as they
allow for a very prescribed set of assumptions to be made about a
system. We begin by defining the necessary properties of a kiosk,
and then explain how each of these properties can (or cannot) be
attained using current off-the-shelf hardware and software com-
ponents. We construct a proof-of-concept implementation using
TPM hardware and Windows 10. We also provide ASKVote,
the Attestable and Secure Voting protocol to demonstrate the
flexibility gained from the use of kiosks in a larger secure system.

I. INTRODUCTION

Falling hardware costs and ever-increasing connectedness
mean that electronic devices have become ubiquitous in ev-
eryday life. The need to carry out secure computations on
trusted machines is at an all-time high. Furthermore, much
of computing relies on multiple devices, meaning that users
who wish to perform secure computations often want to do it
across a network. There is an ever-burgeoning need for trusted
machines, or kiosks, that can allow users to carry out financial
transactions, communicate securely, participate in elections, or
take part in other secure computations across devices [12].
Complicating matters, many applications that require secure
kiosks are wide-spread, meaning the kiosk platform cannot
be expensive or difficult to obtain. Applications have also
already been established using existing, less-secure techniques,
and these systems cannot be wholly replaced. Kiosk platforms
must therefore be established using relatively cheap or already
in-place systems, and secure computation protocols and appli-
cations must be developed with this in mind.

The kiosk platform presented here is a trusted computing
platform built from off-the-shelf, consumer grade hardware
running standard software that can be trusted across a network.
We explore how this platform provides a useful framework for
reasoning about usable security design and serves as an elegant
primitive when designing security protocols. Until recently,
there has been little in the way of a cohesive set of tools and
techniques to enable the development of this kind of platform.
Moreover, security features, like TPM and software support
for its use have not been widely available until very recently,
and this has hindered the development of more open software
platforms for applications which require a very high level of
system security [25]. Finally, naive approaches to developing
kiosks often get ensnared in problems with bootstrapping trust
from the hardware up to the software, and kiosk solutions
must rely on techniques like attestation with a remote party to
circumvent this [10].
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For our purposes, the only necessary features to build a
kiosk are a root-of-trust in hardware (via TPM 2.0), and
software and system mechanisms for attestation. Many spaces
where kiosks are needed have tightly constrained budgets,
for instance, publicly funded county clerks who are tasked
with purchasing voting machines. As long as the hardware
meets our requirements (and whatever additional components
the kiosk needs for its intended purpose) any machine can
be used. Our kiosk primitive will allow a broad base of
currently available computers to be turned into attestably
secure machines, allowing any software running on them to
establish a root of trust all the way down to the hardware.
By securing a wide range of off-the-shelf hardware, entities
like county clerks can reduce cost by buying market-priced
personal computers, but still get the desired security properties
a customized system would deliver.

We present a way in which consumer grade computers
meeting the above requirements can be turned into a secure
kiosk using the Windows 10 platform. While this discussion
largely focuses on the specifics of kiosk implementation in
Windows, the underpinnings of the approach are generalizable
to all platforms. We construct kiosks by providing verifiable
data about the machine to an outside trusted entity (the
administrator) as a means of attesting to the valid state of
the kiosk’s hardware and software. Through this attestation
process, we can provide verification that the machine booted
in a valid state, has not since been restarted, and is currently
enforcing device and software policies as mandated by an
administrator. This allows administrators and trusted entities to
not only verify that a machine is in an expected state, but also
to take action in the event that it is not, for example removing
the machine from its network or alerting an administrator.

II. GOALS FOR A KIOSK PLATFORM

A. Threats

Prior to establishing the goals for our kiosk platform, we
will outline our threat model. We maintain a relatively broad
set of adversaries, as our goal is to mitigate any use-case
outside the specified parameters of the system. It is assumed
adversaries will not modify the hardware of the kiosk, e.g.
removing a TPM device, disconnecting the kiosk from a
network, or otherwise damaging the machine in such a way
that it can no longer function. Outside of this, adversaries will
have the ability to leverage whatever services the kiosk offers
(potentially including Internet connectivity and external device
support).



B. Goals

We will define a kiosk as a trusted computing device built
from off-the-shelf components that restricts user control over
and access to software and software configuration. Specifically,
an arbitrary user cannot modify any part of the machine such
that the machine can enter an unexpected state or exhibit
behavior that violates the kiosk’s intended use. For instance,
if the kiosk is acting as an ATM, a user should not be able
to alter the software of the ATM to reveal other users’ credit
card numbers and PINs. To do this, a user would have to
modify the machine to collect the data in some way and then
report it, either to a local storage device or across a network.
While the kiosk should protect against this kind of tampering,
it should also have the facilities to report its state in the event
that it is tampered with. This reporting of state is attestation,
and it allows a third party to verify that the kiosk is behaving
as expected and take action based on information about the
kiosk’s state.

We also desire to create an environment that allows for
design based in secure computation and protocols. One of
the greatest difficulties in computer security applications is
implementation, so ease-of-use in development is a very
important goal. Not only will developers be able to design
around a trusted platform, but the trust gained by our methods
should not be defeated by bugs and misuse.

In order to achieve these somewhat nebulous goals, our
easy-to-use and robust trusted computing platform will re-
volve around policy enforcement. Much work has been done
regarding this at a systems level: mandatory and role-based
access control, firewalls, code integrity, and other policies have
been proposed and implemented [14]. We seek modular policy
enforcement so that which policies are enforced is entirely
up to the protocol designer to fit the needs of the system.
For instance, e-commerce kiosks may wish to use external
credential inputs, like a smart card, for authenticating the user,
so a smart card reading device would need to be allowed by the
policy. On the other hand, an electronic voting machine may
not need the capability to read smart cards, and this may in fact
open up a vulnerability in the voting system [5]. Networking
constraints may call for a highly configured firewall to be used.
Certain applications may require the use of a web browser, or
Wi-Fi functionality, while others will not.

In short, our goal is to build a machine that:

1) Protects against software and configuration modification
by unprivileged users

2) Prevents access to restricted resources and information by
unprivileged users

3) Attests to the system’s state at arbitrary times so that
malicious parties cannot know when the state kiosk is
being inspected

4) Performs trusted computations in a networked environ-
ment

5) Allows for easy development of kiosk software applica-
tions

6) Enables highly configurable policy enforcement

In order to obtain these properties, we will rely on the
Windows 10 operating system and external features that it

utilizes to provide a trusted computing environment.

III. BACKGROUND AND RELATED WORK
A. TPM

The Trusted Computing Group’s Trusted Platform Module
(TPM) is a foundational building block of most secure comput-
ing schemes. A TPM is a coprocessor that ties cryptographic
keys to hardware, so that a machine can be uniquely identified
in a trusted manner. TPMs also allow for remote attestation of
system state. The way TPM is utilized in Windows reflects
the TCG Software Stack specification, so we do not lose
generality in our discussion of the functionality exposed by the
features discussed below [19]. Windows 7 was the first version
of Windows to use TPM as a means of attesting to system
startup state for features like BitLocker (hard disk encryp-
tion), providing secure key storage, and other cryptographic
functionality. On top of system APIs that accessed TPM, a
TPM Platform Crypto-Provider (TPM PCP) was built to give
developers easier access to TPM functionality and to allow
services to use this functionality for attestation purposes [21].
This provider implements a Key Storage Provider (KSP) that
is used by Windows for key management and storage on the
TPM, and consequently the KSP forms a fundamental basis
for our discussion of security and attestability in Windows 10.

The KSP utilizes the Endorsement Key (EK), which is built
in to the TPM by the manufacturer along with a certificate. The
EK is used to establish pseudo-anonymous Attestation Identity
Keys (AIKs), which can be used by a third-party certificate
authority to issue an AIK certificate. Given that a verifier trusts
the issuer of the AIK certificate, it can challenge the TPM
to prove possession of the AIK backing the certificate. This
process allows the device to prove consistent identity over
time, without exposing the same identifier to every service
provider. In addition to the EK, the TPM’s secure Platform
Configuration Registers (PCRs) contain pertinent data about
the system’s state, for example which binaries have been
loaded. These registers cannot be reset without a boot cycle,
forming an append-only log of the system state.’

B. Related Kiosk Approaches

Secure kiosks have long been sought after. Many of the
problems standing in the way of attaining this goal focused
on bootstrapping trust from the hardware (the TPM) up
through the operating system and into the user space. Without
establishing a root of trust in hardware, systems are vulnerable
to the cuckoo attack, in which adversaries impersonate the
local TPM remotely and fake out any verification [4], [10].
Because there is no trust between the TPM, the hardware, and
the software, a malicious attacker can intercept the software’s
requests to the TPM to validate system state and replace the
on-board TPM’s responses with the responses of a different
TPM. Even if the attacker breaks the machine in a way that the
on-board TPM would detect, the replacement TPM will still
assert that the system is in a good state, fooling the software

I'Specifically, the registers are extended by hashing new data together with
the previous value in the register, forming a trust chain.



and thus totally defeating the purpose. This attack is a central
problem to kiosks, as it prevents the establishment of trust
even within one device, let alone trust in a remote device.

Solutions to this problem include a Seeing-is-Believing
approach in which users enter data physically located on a
computer (e.g., a barcode) about the kiosk into a separate
channel (like a smartphone) and verify the state of the ma-
chine [8], [10]. A related approach involves a process similar
to two-factor authentication, in which users pass a token
with a smartphone via near-field communication (NFC) to
establish an authenticated channel for verification [22].These
approaches present difficulties in that they are not easily
applicable to currently deployed systems, introduce a high
risk of user error, and require the use of a smartphone, which
for some kiosk use-cases is not tolerable (for example, voting
machines). Alternative solutions such as a trusted BIOS, boot
process, or trusted third-party verification, do not suffer these
deficiencies [10]. Windows uses the AIK discussed above as
proof of identity, and a TPM can prove the state of the machine
by reporting the values in the PCRs which can then be verified
remotely to check that they comply with expected values. This
process is generally referred to as remote attestation. Further
details regarding this process can be found in the TCG’s
standards [20].

Remote attestation is a key insight into the problem of
bootstrapping trust, allowing a remote verification service to
provide certification of the validity of the attesting platform’s
configuration [23]. Integrating remote attestation into the boot
process through the Integrity Measurement Architecture (IMA)
allowed for the establishment of a root of trust in hardware
without vulnerability to the cuckoo attack [15]. Windows
Secure Boot is a feature similar to IMA, and allows the
operating system to establish a root of trust down to the
hardware. However, problems persist with establishing an
authenticated channel between the verifier and the user, and
more generally gaining user trust to convince a user that
a cuckoo attack has not occurred [9]. Through the use of
a trusted certificate authority, as proposed in [10], we can
establish an authenticated channel between the verifier and the
user, and in fact this is precisely the architecture of Windows
10 Device Health Attestation.

IV. IMPLEMENTATION
A. Device Health Attestation

Device Health Attestation (DHA) in Windows 10 provides
a framework for acquiring attestation information and using it
to establish trust with a kiosk. Moreover, the Windows Health
Attestation Service (HAS), a specific implementation of DHA,
provides a PCR log parser which reports the status of machine
parameters throughout the boot process. The overall topology
of the DHA flow in Windows involves (shown in figure 1):

the kiosk machine, whose state is being queried

the administrative interface, which requires validation of
the state of the kiosk before trusting it

a certificate authority to issue AIK certificates

an external service that provides validation that the attes-
tation log of system state is genuine and also provides a
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Fig. 1: The DHA topology

parse of values taken from the log in XML format to the
administrative interface.

The external service is currently implemented as Windows
HAS, a Microsoft-operated service. Microsoft additionally
supplies a certificate authority for the issuance and validation
of AIK certificates. In the event that a protocol has needs
outside the scope of Windows HAS (for instance, it needs
to be air-gapped), Windows Server 2016 provides developers
with the ability to build a separate DHA service that replaces
Windows HAS, referred to as an on-premises Health Service.
On-premises Health Services can serve in place of Windows
HAS for systems that cannot connect to the Microsoft operated
service, and they can also fulfill other requirements that are
not met by Windows HAS. For the sake of simplicity we will
use the term HAS, with the understanding that an on-premises
system may be substituted to fill the same role.

To validate the state of the kiosk remotely, the kiosk
provides a signed token from the HAS to the administrative
interface. This token is acquired in the first part of the health
attestation protocol, wherein the kiosk sends its boot log and
a quote of its PCRs to the HAS. The administrative interface
presents the kiosk’s token to the HAS, which, after validating
the token’s authenticity, reports relevant configuration informa-
tion (PCR values, whether BitLocker is enabled, etc.) to the
administrative interface. The administrative interface maintains
a log of expected and valid configurations for the kiosk, and
then checks the reported values against its expected values
for the kiosk’s state. This protocol relies on the AIK and
AIK certificate that were established in the previous section to
identify the kiosk, as well as standard secure communication
and logging techniques to interface with the kiosk and the
HAS and keep track of the kiosk’s state. As the data is logged
in append-only fashion, if the most recent attestation data is
not fresh enough, the kiosk has not provided the proof that
it is in a valid state, and should have its privileges revoked.
Discussion about how acceptable freshness is established and
remediation procedures will be described later in sections IV-D
and V.

From this point forward, when we say a kiosk ‘“attests”
to itself in the context of HAS, we mean that the kiosk is
providing a quote of its state to the HAS that proves it is
in the same state as it was when it acquired the token. The



service is entirely abstracted from the user, or in our case,
the developer who wishes to develop kiosk software. The
administrative interface runs as a server communicating with
the HAS, and kiosks enroll with the administrative interface
as clients of the service over the network. Enrollment relies
on credentials that have previously been established by the
administrator and distributed to the enrolling device.

As part of enrollment, an attestation interval is established,
meaning that the kiosk must attest to its state at regular
intervals of time. If, during the attestation process, the state
of the machine has changed so as to indicate it is operating
in an undesired or undefined way, action can be taken at
this point. Regular attestation, however, presents a problem
to our attestable kiosk model on two fronts. First, if one
were to design a protocol that relied on attestation, not having
control over when a machine attests would cause significant
difficulty, particularly if the protocol had critical sections that
did not align with the regular intervals in which a machine
must be in a valid state. Second, if a machine only ever
attests to itself over regular intervals of time, an attacker
can predict attestation events and clean up the state of the
machine to appear normal. HAS was not developed with
secure kiosks in mind, and regular heartbeats make sense in a
lot of contexts like low-reliability networks or mobile device
platforms. In order to develop secure kiosks with HAS, we
cannot restrict ourselves to regular intervals. Fortunately, the
HAS also exposes methods that will prepare a system for
attestation and send an attestation log, and leveraging this API
as described in V, we can get the granularity and control over
attestation events that we need.

B. The WMI Bridge

As part of Windows’ built-in Device Management services,
the Windows Management Instrumentation (WMI) enables
system information retrieval and function call invocation,
both locally and remotely (though not all exposed APIs are
available remotely). For instance, WMI calls can present
information about processor architecture or operating system
version, data which can assist in making informed decisions
about remote, untrusted machines. WMI also has extensive
exposure in the .NET Framework, meaning that a Windows
application written in the framework can access and invoke
WMI methods and information. Services and system calls
are exposed via WMI Providers, and Windows DHA has
a WMI provider that mediates between SyncML messages
and WMI calls called the WMI Bridge.> Also provided by
the Bridge is access to policy information about enabled
devices and running software on the target machine. A sam-
pling of the configuration information available includes the
status of devices like Bluetooth, cameras, and Wi-Fi, and
information about running programs like Windows Defender,
browser configuration, and whether the OS is configured
to allow untrusted applications to run.’> Essentially, via the

2For more information,
dn934876(v=vs.85).aspx

3For a more extensive list, see https://msdn.microsoft.com/en-us/library/
windows/desktop/dn905224(v=vs.85).aspx

see https://msdn.microsoft.com/en-us/library/

WMI Bridge, we gain increased ability to enforce application
and configuration policy in addition to gaining the ability to
programmatically send attestation data from the kiosk to HAS
by calling VerifyHealthMethod in the WMI Bridge.
While there are not explicit system controls to take action
based on policy enforcement, if we have the information about
what a kiosk is doing, we can know if it is violating a policy,
and programmatically restrict that machine’s privileges on a
network. For instance, if our kiosk is an ATM, and we see that
Bluetooth has been enabled on that machine and a hypothetical
attacker could manipulate the machine with Bluetooth access,
we could force the ATM software (that interfaces alongside the
HAS with an administrative interface) into a fail-safe mode
until a technician inspects the machine and restores it to a
secure state.

C. On-Demand Attestation

Now that we have a way of programmatically sending
attestation data, it is necessary to turn our attention to our
goal of randomly attesting to a systems’s state. Ideally, we
would have an operating system-level control that would allow
an administrative interface to trigger an attestation event on
a remote machine. Networked computers with the correct
permissions and settings can complete WMI calls across the
network. As in our previous example, if an administrative
machine was connected to the ATM, a remote WMI call
could shut down the kiosk altogether. However, not all WMI
calls can be performed across a network, as an invoked WMI
call that targets a remote machine cannot cross the boundary
between Windows’ User and System processes. Specifically,
if a process on our trusted machine attempts to invoke an
attestation event on our kiosk, the call is formed in the User
process on the trusted machine, but the call must be carried
out as a System process on the kiosk, a boundary that cannot
be crossed. Because of this, it is not currently possible to
remotely invoke a health attestation event through a Windows
system call. Despite this, protocols can be designed such that
they preserve unpredictable attestation invocation.

If we restrict our WMI calls to the local kiosk machine,
we can programmatically invoke an attestation event, which
will look exactly like the periodic attestation events to the
service, effectively rendering health attestations on-demand.
All attestation-based security protocols implemented in Win-
dows 10 must then have an API call that allows for an
administrative interface to cause a kiosk to submit its at-
testation data. The software on the kiosk must include the
VerifyHealthMethod call to trigger an attestation event.
When the administrative interface wishes to check the state
of the kiosk, it can send a message over the network. If
the kiosk does not respond with a valid attestation, then the
administrative interface can assume that the kiosk is in a
bad state. The administrative interface must randomly ask all
kiosks to attest, but the randomness can be parameterized by
the level of trust in a system. For instance, in a highly untrusted
system, with a kiosk with a misconfigured firewall, it could be
the case that the administrative interface requests that a kiosk
to attest to itself at a random time such that no more than



two minutes pass between attestations. This interval could be
larger or smaller depending on the trust in the system, or it
could be truly random, with the assumption that the regular-
interval attestation events that are part of DHA will guarantee
that some attestation occurs during the protocol. This satisfies
our goal of arbitrarily attesting to the kiosk’s state.

D. Policy Enforcement

At this point, we now have all the requisite pieces for
building a kiosk system through remote attestation. However,
all that has been provided by the various functions of the
operating system is information about the kiosk. A kiosk is the
result of enforcement of policies based on that information,
not just monitoring. Applying the Baconian “knowledge is
power,” we can now design protocols that take action based
on this information, and therefore enforce security policies on
the kiosk, locking down whatever features we do not want and
allowing those we do. This accomplishes our goal of finding
ways to enforce policy in a modular fashion, and by focusing
on properties rather than disentangling each mechanism as it is
implemented we also help satisfy our goal of ease-of-use [13].

The following is a list of some of the policies that are
configurable via the WMI Bridge,* along with discussion of
how each policy functions in creating a kiosk. Discussion of
how to remediate policy violations follows afterwards.

— Account Policy — A kiosk should only ever have one
non-administrator account through which users will in-
terface. The user account should be restricted to the
local system. Ideally, it should be entirely anonymous,
or even invisible, as the kiosk will never have a user log
in to a local system account. Other user authentication
procedures may be present in the function of the kiosk,
but not at the operating system level.

— Application Management Policy — Kiosks should have
a restricted set of applications that can run, with minimal
outside communication necessary for the applications to
run. Additionally, application data should be restricted to
the kiosk, and should not be stored or shared anywhere
else.

— User Data Protection Policy — Any data tracking that
would be otherwise sent out to a third-party service, like
that automatically configured in Windows 10, should be
turned off.

— Anti-Malware Policy — Users should not be able to
interface with the anti-malware program at all, but it
should still be running.

— Screen Lock Policy — The screen of the device should
never turn off, or it should never lock the device such
that a login is required.

— System Information Policy — Various system information
reporting, such as device location, should be disabled

— External Device Policy — No unapproved external de-
vices should be allowed to connect to the machine, either
physically or wirelessly, for instance USB devices, SD
cards, or Bluetooth devices.

4For a more extensive list, see https://msdn.microsoft.com/en-us/library/
windows/desktop/dn905224(v=vs.85).aspx

— System Configuration Policy — All non-essential system
modes, like kernel debugging, safe mode, etc., should be
disabled.

Many of these features are natively handled by the HAS, and
will be flagged if their values are unexpected. In addition,
other system configuration data is reported, like BitLocker,
the presence of an AIK certificate, whether the machine is
running safe mode, if the early-launch anti-malware (ELAM)
driver is loaded properly, boot and kernel debugging settings,
as well as hashes of the Code Integrity policy, Data Execution
Prevention policy, and the value in PCR[0] of the TPM. All
of these data points are critical to ensuring a secure state for
the Windows operating system and therefore the kiosk itself,
and any deviation from the expected values break the root of
trust for operation of the kiosk.

As for enforcement across the network, the first and most
obvious way of a protocol enforcing security policy is black-
listing. If a machine is misbehaving, simply cut off its inter-
action with the rest of the machines on the network, either by
shutting it down (if possible), black holing its network traffic,
or otherwise notifying the network to ignore what it says.
However, if a machine is malfunctioning for non-malicious
reasons, there may be shades of grey between the blacklist of
bad machines and the whitelist of appropriate behavior. For
instance, if a machine’s anti-malware driver is out of date, but
the differences between the most up-to-date version and the
version on the kiosk are minimal, it may be desirable to restrict
the kiosk’s interactions with the rest of the system, or monitor
it more closely (by performing more frequent attestations) than
to blacklist it. In scenarios like a voting precinct on election
day, having the extra voting machine up, even if in a restricted
state, could have a significant impact on things like queue
length and throughput. Having a flexible policy framework
gives the power to ratchet up security as high as it will go,
but it also allows us to compensate for application-specific
constraints.

A critical takeaway here is that we can integrate policy
enforcement into a protocol, ensuring that actions taken for
malfunctioning or misbehaving kiosks are well defined and
rigorous enough to ensure the security of our software system
as a whole. Again, this will be entirely dependent of the
scenario, but as we have already seen, secure kiosk proto-
col design is particularly well-suited to sensitive transactions
like authentication, verification, and secure data transfer. To
provide a more concrete example of the power gained by
integrating attestable kiosks into security protocols, we present
the following use-case.

V. VOTING SYSTEMS: A K10SK USE-CASE

Voting systems present an almost ideal use-case for secure
kiosks. There is a high standard for security, highly constrained
cost considerations, and the specific procedure of voting
involves a computer executing a very small, well defined set of
tasks. As mentioned before, voting machines are not the only
case for kiosk use, and any scenario involving a very limited
set of functionality and strict security constraints presents a
good candidate for the use of a secure kiosk machine. In order



to better illustrate how one practically designs a secure kiosk,
we present ASKVote, the Attestable and Secure Kiosk voting
protocol. ASKVote is merely a protocol, designed to fit in with
a larger secure voting scheme, and to work in conjunction
with other verifiable voting schemes and systems like STAR-
Vote [3], Helios [1], and others. As mentioned above, the
flexibility of off-the shelf hardware and software means that a
kiosk protocol can be designed independently of the specifics
of electronic voting schemes, and it is not dependent on the
cryptographic or procedural mechanisms of those schemes.’

The ASKVote primitives, as described above in our discus-
sion of DHA, are a trusted machine running an administrative
interface, one or more kiosk machines running the voting
interface, and an on-premises Health Service running on
another machine on the network.® The machines are connected
via a network, either through standard mechanisms like TCP,
or through more exotic protocols like Auditorium [16]. Other
necessary machines may be present on this network, such as
other administrative interfaces, auditing devices, ballot reading
devices, or any other machines required by an election pro-
tocol.” As the ASKVote kiosk attestation protocol is entirely
encapsulated in the connection between the administrative in-
terface, kiosk, and on-premises Health Service, other machines
are extraneous and will not be considered here.

The ASKVote protocol here presented requires that ballot
information not be located on the kiosk machine; instead,
it will be distributed by the administrative interface when
the kiosk is ready to vote. By allowing this constraint, we
can show how attestation can be integrated into the secure
functions of protocols. It should be noted that this is not
required for an attestable voting protocol to be secure. The
attestation of the kiosk can still provide a means of further
hardening a protocol that does not integrate attestation events
by providing extra data to be validated by an audit process, or
by simply providing control of the device based on its state. As
other systems already exhibit the behavior of keeping ballot
data separate from the kiosk (except when in use), we feel
that it is a reasonable constraint on the scenario and a useful
example of integrating secure kiosk attestation with another
security system.

A. The Protocol

The ASKVote protocol can be broken into three major
phases, the pre-election phase, the election phase, and the post-
election phase.

1) Pre-election: In the pre-election phase, the kiosks and
administrative interface are set up, configured, and networked.
Once connected, the administrative interface starts an instance

SIn the particular case of verifiable voting schemes, user trust is already
strengthened by the verifiable nature of the scheme. However, ASKVote
actually complements this strengthening by providing a secure platform for
voting and by giving the verifiers more information to verify, since they can
view the history of a machine’s state throughout an election.

%Due to security concerns, voting systems are typically air-gapped. This
means that we cannot rely on Windows HAS and will instead assume the use
of an on-premises Health Service.

7It is incumbent on the protocol to restrict the machines on the network to
exclusively the ones it needs, however.

of the on-premises Health Service server, and the kiosk ma-
chine enrolls in the service. Now enrolled, the administrative
interface will be able to collect attestation data from the kiosk
throughout the duration of the election, thus enabling policy
decisions to be made on the fly. Any other pre-election setup
can occur as specified by the voting protocol.

2) Election: Once the election has started, a voting session

takes the following shape:

1) A voter approaches the kiosk and initiates the voting
process. This may or may not include the entering of
an authentication code to specify what kind of ballot the
voter will vote on. This is left up to the voting protocol,
and discussion here is merely to paint a clearer picture
of what goes on.

2) The kiosk sends the administrative interface the voter’s
identifier (if there is one), and also sends an attestation
record to prove that the kiosk is in a good state and can
be permitted to submit a ballot.

3) The administrative interface examines the attestation data
parsed by the Health Service, and determines if the
kiosk is indeed in a good state. The attestation data,
as well as the administrative interface’s determination,
are both logged via a cryptographically secure logging
mechanism.

4) If the kiosk’s state is good, the administrative interface
sends the ballot data to the kiosk.

5) The voter will begin making selections and marking the
ballot. Meanwhile, the kiosk will send attestation quotes
to the administrative interface at regular intervals, as well
as responses to the random requests of the administrative
interface as discussed above. The administrative interface
will be expecting a quote at each interval, and if it
does not receive a quote as expected, or if the kiosk
does not respond to a requested attestation event, the
administrative interface can assume that the kiosk is
acting maliciously. Note that the expected interval may be
a range to account for things like network latency. If the
data is not received within the interval, the administrative
interface will alert an election official and necessary
steps will be taken, as specified by election protocol
and the specifics of the voting scheme. For instance, the
ballot marked in this session may not be counted, or the
machine may be taken offline.

6) When finished marking the ballot, the voter will commit
the ballot. The ballot will be encrypted (using a key
distributed to the kiosk during the setup phase of the
election). The kiosk will send the encrypted ballot data
alongside an attestation quote to allow the administrative
interface to determine if the completed ballot data can
be accepted.® If the machine is still in a good state,
the encrypted completed ballot data will be stored by
the administrative interface. Finally, another attestation
record to ensure nothing changed while committing the
ballot immediately afterwards, and if the kiosk is still

8 Accepted is a rather nebulous term, but generally we mean that the ballot
should be considered committed as intended. If the election protocol uses a
commit-challenge model, then the ballot is committed. Otherwise, the ballot
may be considered cast at this time.
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determined to be in a good state, the ballot will be
accepted. All data in this transaction will be logged.

3) Post-Election: During the post-election phase, the elec-
tion logs from the administrative interfaces may be examined
to ensure that no kiosk submitted ballot data while in a
state not approved by the protocol. If there are unexpected
values in the logs, the individual kiosk can be checked for
tampering and decisions can be made about what to do with its
completed ballot data. These logs can be published, provided
the ballot data is anonymous, so that third parties can verify
the state of the kiosks was in fact normal during the election,
in addition to other verification mechanisms that are out of
scope here. In this way ASKVote serves to complement and
strengthen auditability mechanisms that are currently proposed
by working in conjunction with them and providing more
evidence to the validity of an election.

VI. EVALUATION

While we have made progress towards creating the first
kiosk, there are several extensions and improvements that can
be made, and we examine them here. As aforementioned,
an attest-on-demand mechanism that is triggered remotely at
the system level rather than at the application level would
be a significant improvement, as it would reduce the attack
surface of the kiosk. For instance, if somehow an attacker
could insert itself into the ASKVote protocol between the two
final attestations without detection, this would more or less
defeat the purpose of the protocol (granted, other mechanisms
like a commit-challenge model serve to lessen this threat).

One particularly dubious portion of our proof-of-concept
is that it is done in a relatively closed-source environment.
The Windows system calls we rely on themselves should
be examined in order assure against malicious or erroneous

code in the security stack on which the kiosk relies. There is
promising work towards this goal in system-level provenance
in an open-source environment [2].

TPM-based attestation is itself somewhat limited in its
current form in Windows. The HAS can attest to everything
up to the application layer, and can even attest to the signer of
the application (through Device Guard Code Integrity)®, but
not beyond. For a true kiosk, the executable of the application
that is running (say, the voting software) should be verified
in the same manner as the driver and OS checks at present,
and the results should be stored. This would of course incur
performance costs, but on a kiosk machine only running
one application, it likely will not have a significant impact
(however there is research to be done there, too).

VII. FUTURE WORK

Looking towards forwards, there are a few areas which
inform and are informed by trusted computing. Additional
attestation and data provenance techniques, like dynamic at-
testation [6] and finer-grained attestation controls like program
annotation [17] show promise in addressing some of the short-
comings we have noted above. Integrating system provenance
techniques that already rely on TPM into attestation protocols
may also prove fruitful for hardening kiosks [2].

In regard to the overall picture of Device Management (and
specifically Mobile Device Management, MDM), we feel that
there is promising work in examining the security properties
of large scale systems that are controlled by MDM platforms.
Again, to fall back on the same example, voting systems in

9Device Guard is another feature that further solidifies the trusted comput-
ing platform provided by Windows 10, and can extend the root of trust from
the hardware into the application layer. However, it is beyond the scope of
this paper.



large precincts involve hundreds if not thousands of voting
kiosks, and having the ability to monitor and push fixes
to software issues in a centralized fashion may provide an
invaluable tool for election officials, likewise with ATMs, e-
commerce kiosks, or others. If MDM software distribution can
be used to apply our secure kiosk framework on any machine,
perhaps an ephemeral “kiosk-ification” can be deployed to any
user device so long as it has a TPM, allowing users to interact
with secure systems from their own devices. Some work on
trusted computing and online voting has already been done,
but much of the infrastructure presented here was not yet
widely available enough on end-user computers to make it
a viable option [25]. Other work on locking down a system
for security-sensitive transactions has been done in [24], in
addition to work regarding the creation a red/green environ-
ment through virtualization [7], [11]. The obvious challenges
to online voting (and generally to ephemeral “kiosk-ification’)
include a lack of coherence in application policy, which can
prevent successful performance of secure operations on a
wholly untrusted machine [18]. Privacy is also a concern, but
it may be possible through sophisticated sandbox techniques
and permissions to avoid putting users’ personal data at risk
when interacting with secure systems.

VIII. CONCLUSIONS

We have shown that an attestably secure and auditable
kiosk can be created using existing Windows 10 features.
In addition, we have developed the set of functionality ap-
propriate to secure kiosk devices based on these features.
Kiosks are powerful tools in spaces like financial transactions,
elections, e-commerce, and secure communication, and the
trusted computing platform provided by kiosks will only
become more prevalent. We have explored how attestable
kiosks provide a robust and usable environment for developers
to create protocols based on hardened trust assumptions, and
also assessed the greater flexibility in policy enforcement
gained through kiosks. We have also provided an example
of the use of a kiosk in our ASKVote protocol for increased
voting security and auditability.
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